Стандартная модель

0
370

Стандартная модель — это современная теория строения и взаимодействий элементарных частиц, многократно проверенная экспериментально. Эта теория базируется на очень небольшом количестве постулатов и позволяет теоретически предсказывать свойства тысяч различных процессов в мире элементарных частиц. В подавляющем большинстве случаев эти предсказания подтверждаются экспериментом, иногда с исключительно высокой точностью, а те редкие случаи, когда предсказания Стандартной модели расходятся с опытом, становятся предметом жарких споров.

Стандартная модель — это та граница, которая отделяет достоверно известное от гипотетического в мире элементарных частиц. Несмотря на впечатляющий успех в описании экспериментов, Стандартная модель не может считаться окончательной теорией элементарных частиц. Физики уверены, что она должна быть частью некоторой более глубокой теории строения микромира. Что это за теория — достоверно пока неизвестно. Теоретики разработали большое число кандидатов на такую теорию, но только эксперимент должен показать, что из них отвечает реальной ситуации, сложившейся в нашей Вселенной. Именно поэтому физики настойчиво ищут любые отклонения от Стандартной модели, любые частицы, силы или эффекты, которые Стандартной моделью не предсказываются. Все эти явления ученые обобщенно называют «Новая физика»; именно поиск Новой физики и составляет главную задачу Большого адронного коллайдера.

(Подробнее про физику за пределами Стандартной модели)

Основные компоненты Стандартной модели

Рабочим инструментом Стандартной модели является квантовая теория поля — теория, приходящая на смену квантовой механике при скоростях, близких к скорости света. Ключевые объекты в ней не частицы, как в классической механике, и не «частицы-волны», как в квантовой механике, а квантовые поля: электронное, мюонное, электромагнитное, кварковое и т. д. — по одному для каждого сорта «сущностей микромира».

ЧИТАТЬ ТАКЖЕ:  Транссиб как символ величия

И вакуум, и то, что мы воспринимаем как отдельные частицы, и более сложные образования, которые нельзя свести к отдельным частицам, — всё это описывается как разные состояния полей. Когда физики употребляют слово «частица», они на самом деле имеют в виду именно эти состояния полей, а не отдельные точечные объекты.

Рис. 1. Фундаментальные частицы Стандартной модели: три поколения кварков и лептонов, частицы-переносчики силовых взаимодействий между ними и не найденный пока хиггсовский бозон. Изображение с сайта GridPP Стандартная модель включает в себя следующие основные ингредиенты:

  • Набор фундаментальных «кирпичиков» материи — шесть сортов лептонов и шесть сортов кварков. Все эти частицы являются фермионами со спином 1/2 и очень естественным образом организуются в три поколения. Многочисленные адроны — составные частицы, участвующие в сильном взаимодействии, — составлены из кварков в разных комбинациях.

     

  • Три типа сил, действующих между фундаментальными фермионами, — электромагнитные, слабые и сильные. Слабое и электромагнитное взаимодействия являются двумя сторонами единого электрослабого взаимодействия. Сильное взаимодействие стоит отдельно, и именно оно связывает кварки в адроны.

     

  • Все эти силы описываются на основе калибровочного принципа — они не вводятся в теорию «насильно», а словно возникают сами собой в результате требования симметричности теории относительно определенных преобразований. Отдельные виды симметричности порождают сильное и электрослабое взаимодействия.

     

  • Несмотря на то что в самой теории имеется электрослабая симметрия, в нашем мире она самопроизвольно нарушается. Спонтанное нарушение электрослабой симметрии — необходимый элемент теории, и в рамках Стандартной модели нарушение происходит за счет хиггсовского механизма.

     

  • Численные значения для примерно двух десятков констант: это массы фундаментальных фермионов, численные значения констант связи взаимодействий, которые характеризуют их силу, и некоторые другие величины. Все они раз и навсегда извлекаются из сравнения с опытом и при дальнейших вычислениях уже не подгоняются.

Кроме того, Стандартная модель — перенормируемая теория, то есть все эти элементы вводятся в нее таким самосогласованным способом, который, в принципе, позволяет проводить вычисления с нужной степенью точности. Впрочем, зачастую вычисления с желаемой степенью точностью оказываются неподъемно сложными, но это проблема не самой теории, а, скорее, наших вычислительных способностей.

Рис. 2. Все фундаментальные частицы Стандартной модели (а также некоторые гипотетические частицы) в виде плюшевых игрушек. Изображение с сайта Particle Zoo

Что может и чего не может Стандартная модель

Стандартная модель — это, во многом, описательная теория. Она не дает ответы на многие вопросы, начинающиеся с «почему»: почему частиц именно столько и именно таких? откуда взялись именно эти взаимодействия и именно с такими свойствами? зачем природе понадобилось создавать три поколения фермионов? почему численные значения параметров именно такие? Кроме того, Стандартная модель не способна описать некоторые явления, наблюдаемые в природе. В частности, в ней нет места массам нейтрино и частицам темной материи. Стандартная модель не учитывает гравитацию и неизвестно, что с этой теорией происходит на планковском масштабе энергий, когда гравитация становится чрезвычайно важной.

(Подробнее про трудности Стандартной модели)

Если же использовать Стандартную модель по своему назначению, для предсказания результатов столкновений элементарных частиц, то она позволяет, в зависимости от конкретного процесса, выполнять вычисления с разной степенью точности.

  • Для электромагнитных явлений (рассеяние электронов, энергетические уровни) точность может достигать миллионных долей и даже лучше. Рекорд тут держит аномальный магнитный момент электрона, который вычислен с точностью лучше одной миллиардной.

     

  • Многие высокоэнергетические процессы, которые протекают за счет электрослабых взаимодействий, вычисляются с точностью лучше процента.

     

  • Хуже всего поддается расчету сильное взаимодействие при не слишком высоких энергиях. Точность расчета таких процессов сильно варьируется: в одних случаях она может достигать процентов, в других случаях разные теоретические подходы могут давать ответы, различающиеся в несколько раз.

Стоит подчеркнуть, что тот факт, что некоторые процессы тяжело рассчитать с нужной точностью, не означает, что «теория плохая». Просто она очень сложная, и нынешних математических приемов пока не хватает, чтоб проследить все ее следствия. В частности, одна из знаменитых математических Задач тысячелетия касается проблемы конфайнмента в квантовой теории с неабелевым калибровочным взаимодействием.

Дополнительная литература:

  • Базовые сведения о хиггсовском механизме можно найти в книге Л. Б. Окуня «Физика элементарных частиц» (на уровне слов и картинок) и «Лептоны и кварки» (на серьезном, но доступном уровне).

ЧИТАТЬ ТАКЖЕ:  Газета «Троицкий вариант —