Астрономические времена: 7. Сверхдолгоживущие частицы

0
274

Внутренность японского детектора Super-Kamikande: огромный бак со сверхчистой водой и тысячи фотоумножителей, установленные на стенках для регистрации редчайших событий превращения элементарных частиц. Изначально он строился для поиска распада протонов, но его основное направление работы сейчас — изучение нейтрино

Самые кратчайшие промежутки времени, про которые современная физика может сказать что-то достоверное, относятся к жизни элементарных частиц. Поразительно, но и самые долгие времена, доступные эксперименту — тоже относятся к микромиру! И сейчас мы разберемся, почему так получается.

В природе существуют разнообразные нестабильные атомные ядра, в том числе и очень долгоживущие. Времена жизни некоторых из них намного превышают возраст нашей Вселенной, и тем не менее физики способны измерять такие огромные промежутки времени! Рекордсменом тут является ядро теллура-128: его экспериментально измеренный период полураспада составляет 2·1024 лет, что на четырнадцать порядков (!) превышает возраст Вселенной.

Как вообще можно измерять настолько длительное время, которое не вмещается даже в жизнь Вселенной, не говоря уже про лабораторный эксперимент? Объяснение кроется в двух простых фактах.

Во-первых, элементарных частиц и даже атомных ядер определенного типа очень много. Пригоршня вещества — это примерно число Авогадро молекул. Во-вторых, время жизни нестабильной частицы — это не гарантированное, а лишь среднее ожидаемое время до распада. Каждая конкретная частица может распасться и прямо сейчас, и попозже, а иногда — намного позже, чем номинальное время жизни. Объединим эти два факта, добавим чуть-чуть математики, и получаем простой, но очень важный закон:

ЧИТАТЬ ТАКЖЕ:  Алмазы, легированные германием: сибирские ученые выходят на новый уровень
если у нас есть N частиц с временем жизни T, то количество распадов за короткое время t ≪ T примерно равно

n  =   t  N.
T

Для того, чтобы хотя бы приблизительно измерить время жизни очень долгоживущей частицы, надо просто собрать много таких частиц вместе и сосчитать количество распадов за разумное время.

Давайте оценим, до каких времен жизни сможет «дотянуться» топовый лабораторный эксперимент. Пусть у нас есть килограмм какого-то редкого изотопа. Килограмм — это чуть больше числа Авогадро, скажем, порядка 1024 ядер. Мы поместили этот килограмм в сверхчувствительную установку, заэкранировали ее от космических лучей и прочих воздействий, и за год наблюдения зафиксировали всего один-единственный — но зато достоверный! — акт распада. Тогда используя формулу, мы по этому одному событию оцениваем время жизни этого изотопа:

ЧИТАТЬ ТАКЖЕ:  Студентка ТПУ стала лучшей на мировом первенстве по программированию
T  =   N  t  =   1024 лет.
n

Самый экстремальный пример эксперимента такого типа  — это ограничение на время жизни протона. Вообще, по современным представлениям протон полностью стабилен. Но существуют теории, и причем довольно привлекательные для физиков, которые предсказывают, что эта стабильность неабсолютна и что спустя очень большое время протон распадется на позитрон и фотоны. Поэтому физики давно уже начали ставить эксперименты по поиску хоть каких-то следов распада протона.

В отличие от редких изотопов, протоны есть везде, причем в изобилии — ведь это ядра атомов водорода. Поэтому можно взять сколько угодно подходящего вещества и поставить эксперимент гигантского масштаба. Ограничивает эти фантазии лишь несовершенство детектирующей аппаратуры и невозможность полностью избавиться от побочных эффектов. Тем не менее, детекторы получаются очень впечатляющие. Например, специализированный японский детектор Super-Kamiokande, который был изначально построен как раз для поиска распада протона, представляет собой 40-метровый бак, заполненный 50 тысячами тонн сверхчистой воды и напичканный тысячами светочувствительных элементов. Такой объем воды содержит 6·1033 отдельных протонов. Так вот, если такой детектор проработает, скажем, 10 лет и не зарегистрирует ни одного события распада протона — а при этом мы уверены, что каждый такой распад был бы замечен, — то мы сможем установить ограничение снизу порядка 1034 лет. Слова «ограничение снизу» означают, что по результатам нашего эксперимента мы не можем точно сказать, стабилен протон или нет, однако даже если он нестабилен, его время жизни заведомо превышает это ограничение.

ЧИТАТЬ ТАКЖЕ:  Хирурги ННИИПК им. акад. Е.Н. Мешалкина применяют инновационную технологию для лечения сердечной недостаточности

Реальные ограничения на распад протона примерно такими и получаются — чуть больше 1033 лет. Вдумайтесь только — это на 23 порядка больше, чем возраст Вселенной! За всю жизнь Вселенной не протикало столько секунд, сколько нынешних «возрастов Вселенной» должно протикать, прежде чем протоны начнут активно распадаться. И тем не менее, современная физика способна чувствовать такие безумно долгие времена!


Сонолюминесценция Тектоническая жизнь Земли