Размеры
В физике элементарных частиц изучаются атомные ядра и еще более мелкие частицы. Их размеры удобно выражать в фемтометрах (фм): 1 фм =
Фемтометр в миллион раз меньше нанометра — типичного размера молекул. Размер протона или нейтрона как раз составляет примерно 1 фм. Существуют составные частицы, размер которых еще меньше; например, ипсилон-мезон, состоящий из кварк-антикварковой пары b–анти-b, имеет размер примерно 0,2 фм. Другие частицы (называемые фундаментальными), например кварки, электроны, нейтрино и т. д., пока считаются точечными; если они и имеют внутреннюю структуру, то эта структура проявится при размерах, меньших, чем тысячная доля фемтометра.
Времена
В отличие от расстояний, характерные времена, использующиеся при описании превращений элементарных частиц, могут быть самые разные.
Для протон-протонных столкновений в качестве базовой единицы времени можно взять время, за которое частица с околосветовой скоростью проходит расстояние, равное размеру протона, — это составляет примерно
Когда два протона сталкиваются в коллайдере, именно в течение этого промежутка времени происходит рождение некоего высокоэнергетического сгустка материи и его распад на конечные частицы. Однако сами рожденные частицы могут жить намного дольше. Например, адроны, распадающиеся за счет слабого взаимодействия, живут пикосекунды, наносекунды и иногда даже больше. Рекордсмен тут нейтрон, чье время жизни в свободном состоянии составляет примерно 15 минут. Относительно большое время жизни этих частиц вызвано тем, что распадаются они не за счет сильного, а за счет слабого или электромагнитного взаимодействия. Такие частицы успевают пролететь до распада большие дистанции — миллиметры, метры и больше; эти метастабильные частицы регистрируются непосредственно в детекторе. Частицы, распадающиеся за счет сильного взаимодействия (так называемые адронные резонансы), живут в течение адронного масштаба времени. Такие частицы до детектора не долетают, и они изучаются по следам своего распада.
Энергии
Энергии элементарных частиц измеряют в электронвольтах (эВ) и кратных единицах. По определению, 1 эВ — это энергия, которую приобретет электрон в электрическом поле при прохождении разности потенциалов в 1 вольт; 1 эВ примерно равен
Явления, происходящие внутри ядер и элементарных частиц, сопровождаются гораздо большими изменениями энергии. Здесь уже используются мегаэлектронвольты (МэВ, 106 эВ), гигаэлектронвольты (ГэВ, 109 эВ) и даже тераэлектронвольты (ТэВ, 1012 эВ). Например, протоны и нейтроны движутся внутри ядер с кинетической энергией в несколько десятков МэВ. Энергия протон-протонных или электрон-протонных столкновений, при которых становится заметна внутренняя структура протона, составляет несколько ГэВ. Для того чтобы родить самые тяжелые из известных на сегодня частиц, топ-кварки, требуется сталкивать протоны с энергией около 1 ТэВ.
Между шкалой расстояний и шкалой энергии можно установить соответствие. Для этого можно взять фотон с длиной волны L и вычислить его энергию: E = c·h/L. Здесь c — скорость света, а h — постоянная Планка, фундаментальная квантовая константа, равная примерно
Шкалу энергий можно также связать и со шкалой времен: E = h/T. Физический смысл этого соотношения в квантовой механике таков: процесс, сопровождающийся неопределенностью энергии E, длится примерно в течение времени T. Например, если частица распадается в течение типичного адронного масштаба времени, то неопределенность ее массы составляет порядка 1 ГэВ.
Массы
Согласно знаменитой формуле Эйнштейна
Частота событий
Обсуждая вероятность того или иного процесса на коллайдере, физики обычно приводят две величины: сечение процесса и светимость коллайдера. Именно их произведение определяет, насколько часто происходит столкновение того или иного типа на данном коллайдере.
Сечение (или, по-старинному, эффективное сечение) — это, грубо говоря, та поперечная площадь в частице-мишени, в которую надо попасть налетающей частице, чтобы произошла нужная реакция. Однако не стоит понимать эти слова буквально: будто поверхность протона разделена на области: попадешь в одну — произойдет одна реакция, попадешь в другую — другая. Так могло бы быть в классической механике, но в мире квантовых частиц самые разные процессы протекают с какой-то вероятностью даже при совершенно идентичных столкновениях. Просто эти вероятности удобно выражать в виде неких сечений, отвечающих тому или иному процессу, и измерять их в единицах площади. Стандартная единица измерения сечений в физике элементарных частиц — барн (b);
Подробнее про сечения процессов
Светимость — это «инструментальная» характеристика коллайдера, характеризующая интенсивность пучков. Светимость зависит от количества частиц в каждом пучке и от того, насколько плотно частицы собраны. Чем больше светимость, тем чаще происходят столкновения частиц из встречных пучков.
Светимость выражается в
Подробнее про светимость коллайдеров
Далее, частота, с которой детектор будет регистрировать данный тип событий, обычно меньше частоты, с которой это событие происходит. Так получается потому, что вовсе не на каждое событие детектор «срабатывает» нужным образом, то есть у детектора неидеальная эффективность регистрации. Например, родившиеся частицы могут пролететь мимо детектора и избежать регистрации (впрочем, благодаря высокой герметичности современных детекторов вероятность этого мала). Либо энергия частицы одной из частиц может оказаться маленькой, и детектор просто не учтет эту частицу, примет ее за случайный шум. Либо детектор может неправильно идентифицировать рожденную частицу, приняв ее за другую и на основании этого отбросив событие как неинтересное.
Все эти процессы необходимо учитывать при сравнении реально полученных данных с теоретическими расчетами. Обычно это делается путем сложного численного моделирования процессов, протекающих внутри детектора при прохождении сквозь него частиц.
Наконец, число событий, отобранных для анализа какого-то конкретного процесса (то есть та статистика, на основе которой физики, например, заявляют об открытии новой частицы), обычно намного меньше числа реально зарегистрированных событий этого типа. Дело в том, что обычно искомые события происходят довольно редко, и их приходится вылавливать из мешанины самых разнообразных фоновых процессов. Для того чтобы увеличить надежность результатов, физики обычно отбирают только самые четкие события-кандидаты, наиболее непохожие на последствия фоновых процессов. Подробнее про эту методику см. в популярной статье Анатомия одной новости, или Как на самом деле физики изучают элементарные частицы.